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Convolutional Neural Networks:
Deep Learning with Images



Computer Vision - A bit of history

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligémce Group
Vision Memo. Ho. 100.

THE SUMMER VISION PROJECT

Seymour Papert

The summeér vision project is an atrempt CO usSe our summer workers
effectively in the construction of a significant part of a visual system
The particular task was chosen part{; because it can be segmented into
gub=problems which will allow individuals te work independently and yet
participate in the ceonstructicn of a system complex enough to be a real

landmark in the development of "pattern recognition!l.

https://dspace.mit.edu/bitstream/handle/1721.1/6125/AIM-100.pdf

Goals - General

The primary geal of the preject is teo construct a system of programs
which will divide a widisector picture into regions such as

likely objects

likely background areas

chaos.

We shsll call ti-|i.5 part of its operation FIGURE-GROUND analysis.

It will be impossible to do this without considerable analygis of
shape and surface properties, so FIGURE-GROUND analysis is really insepar-
able in practice from the second geal which is REGION DESCRIFTION.

The final goal is OBJECT IDENTIFICATION which will actually name

objects by matching thes with & vocabulsry of known objects.



Computer Vision - A bit of history

WHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK WHETHER
THEY'RE IN A NATIONAL PARK ...

SURE, ERSY GIS LOOKUR
GIMME A FEW HOUR‘J

.. AND CHECK WHETHER
THE PHOTO 15 OF A BIRD.

I NEEDA RESEHRCH

ﬁ TEAM AND FIVE YEARS.

IN 65 IT CAN BE HARD TO EXPLAIN

THE DIFFERENCE BETWEEN THE ERSY
AND THE VlRT VALLY IMPOSSIBLE.

https://xkcd.com/1425/
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1,000 object classes
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Object Detection = What, and Where

Localization
Where?

person : 0.992

Recognition :>
_car: 1.000
What? 5 B
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person : 0.979
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Object Segmentation
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Figure credit: Dai, He, and Sun, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, CVPR 2016



Pose Estimation

el S Re R e e A N T
USAJ United States of America 3

Figure credit: Cao et al, “Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields”, arXiv 2016



Image Captioning

“straw” “hat” END

o

"man in black shirt is playing ‘construction worker in orange
guitar. safety vest is working on road."

UStraW" Mhat"

air

Figure credit: Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions”, CVPR 2015
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girl in pink dress is jumping in "black and white dog jumps over

bar."

two young girls are playing with
lego toy."

"young girl in pink shirt is
swinging on swing."

"boy is doing backflip on
wakeboard."

man in blue wetsuit is surfing on
wave."




Dense Image Captioning
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Figure credit: Johnson*, Karpathy*, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016




Visual Question Answering

What color are her eyes?

ple Choices

batter?
A: Catcher.
A: Umpire.
A: Fans.
A: Ball girl.

H: Catcher. v/
M: Umpire. X
H: Catcher. v/
v

Q: Who is behind the

: What adorns the
tops of the post?

: Gulls.

: An eagle.

: A crown.

: A pretty sign.

: Gulls. v/
: Gulls. v/

: Gulls. v/
: Acrown. X

Q: How many cameras
are in the photo?

A: One.
A: Two.
A: Three.
A: Four.

H: Three. X
M: One. v/

H: One. v/

What is the mustache made of?

o
o
«
£
L
H
o
=)
]
E
E
n

M: Catcher.

: What kind of stuffed Q: What animal is being
animal is shown? petted?

: To tie up the boats. : Teddy Bear. A: A sheep.
: To tie up horses. : Monkey. A: Goat.

: To hang people. : Tiger. A: Alpaca.

: To hit tether balls. : Bunny rabbit. A: Pig.

: Why is there rope?

Does it appear to be iny? 8
Does this person have 20/20 vision?

Is this person expecting company?
What is just under the tree?

: To hit tether balls. X
: To hang people. X

: Monkey. X
: Teddy Bear. v/

H: Asheep. v/
M: Asheep. v/

H: Goat. X
M: A sheep. v/

H: To tie up the boats. v/
M: To hang people. X

: Teddy Bear.
: Teddy Bear.

Figure credit: Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015 (left)
Zhu et al, “Visual7W: Grounded Question Answering in Images”, CVPR 2016 (right)



Image Super-resolution

SRResNet

Figure credit: Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, arXiv 2016
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Gatys, Ecker, and Bethge, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016 (left)
Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural Networks” (upper right)
Johnson, Alahi, and Fei-Fei: “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016 (bottom left)



Convolutional Neural Networks



Recall: fully connected neural network

\)

O
We O

W
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Recall: fully connected neural network

32x32x3 image -> stretch to 3072 x 1

input activation

Wax

S —> 4 [e

3072 10 x 3072 10

weights

17



Convolutional Neural Network

el
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Convolution

Center element of the kernel is placed over the
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

ISource pixel

0
0
0
0
0

Convolution kernel
(emboss)

New pixel value (destination pixel)

Image courtesy Apple



Convolving “filters” is not a new idea
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Convolution Layer

32x32x3 image

|ﬁ

32 height

width

3 depth

Slide credit: CS231n Lecture 7

21



Convolution Layer

32x32x3 image

y/

32 height

32 width

3 depth

Slide credit: CS231n Lecture 7

Filters always extend the full
depth of the input volume

/

5x5x3 filter

y /

II Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

22



Convolution Layer

ox5x3 filter

™ 1 number:
the result of taking a dot product between the

y/
|E>‘
filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

’

Slide credit: CS231n Lecture 7
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Convolution Layer

5x5x3 filter
32

e

convolve (slide) over all
spatial locations

| 32
3

Slide credit: CS231n Lecture 7

activation maps

y

1

28

28

24



Output
Filter

= e o o = = o

i Padding .



A=

Slide credit: CS231n Lecture 7

32
y/
It>‘
32
3

Convolution Layer
activation maps

5x5x3 filter //

convolve (slide) over all
spatial locations

28

consider a second, green filter

26



For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

A - {(//

32

3

We stack these up to get a new “image” of size 28x28x0!

Slide credit: CS231n Lecture 7



ConvNet is a sequence of Convolution Layers, interspersed with activation functions

A~ M-

3

Slide credit: CS231n Lecture 7

32

—_—

CONV,
RelLU
e.g.6
32 ox5x3
UGS




ConvNet is a sequence of Convolution Layers, interspersed with activation functions

4 4

—

CONV,
RelLU
e.g.6
32 ox5x3
UGS

CONV,
RelLU

CONV,
RelLU

Slide credit: CS231n Lecture 7



Two key insights

1) Features are hierarchical

Composing high-complexity features out of low-complexity features is more
efficient than learning high-complexity features directly.

e.g.: having an “circle” detector is useful for detecting faces... and basketballs
2) Features are translationally invariant

If a feature is useful to compute at (x, y) it is useful to compute that feature at
(x’, y’) as well



Hierarchical organization

Retinal ganglion cell LGN and V1
receptive fields simple cells

O
Q

R\
Ve an”
\\©

lllustration of hierarchical organization in early visual
pathways by Lane Mclintosh, copyright CS231n 2017

Simple cells:
Response to light
orientation

Complex cells:
Response to light
orientation and movement

Hypercomplex cells:
response to movement
with an end point

N\

No response Response

(end point)




Visualization of VGG-16 by Lane McIntosh. VGG-16

P reVieW [Ze,ler and Fergus 20 1 3] architecture from [Simonyan and Zisserman 2014].

Linearly
separable
classifier

Low-level Mid-level High-level
features features features

& ;;._‘a é‘{ :)3
VGG-16 Convl VGG-16 Con




one filter => :
one activation map example 5x5 filters

(32 total)

H FlLLF B o -l Y T AT T P T T

Actlvat|ons

We call the layer convolutional
because it is related to convolution
of two signals:

flx,yl*glx,y] = Z 2 fln,n,]-glx—n,y—n,]

ny=—oco py =—0o0

element-wise multiplication and sum
of a filter and the signal (image)

igure copyright Andrej Karpathy.



A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output




A closer look at spatial dimensions:

14
/X7 input (spatially)

assume 3x3 filter
applied with stride 2




A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 2




A closer look at spatial dimensions:

14
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

=> 3x3 output!




A closer look at spatial dimensions:

14
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?




A closer look at spatial dimensions:

14
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?




Output size:
(N - F) / stride + 1

eg.N=7,F=3:
stride1=>(7-3)/1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=2.33:\




In practice: Common to zero pad the border

ofofofojolo] | | ERNNEA

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1




In practice: Common to zero pad the border

ofofofojolo] | | ERNNEA

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!




In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)



Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

A-

y B
. . .
CONYV, CONYV, CONV,
RelLU RelLU RelLU
e.g.6 e.g. 10
32 5x5x3 5x5x6 24
3 filters filters



Summary. To summarize, the Conv Layer:

» Accepts a volume of size W; x H; x Dy
Requires four hyperparameters:

o Number of filters K,

o their spatial extent F,

o the stride S,

o the amount of zero padding P.

Produces a volume of size W x Hs x D, where:
o Wo=(W; —F+2P)/S+1

K

Common settings:

= (powers of 2, e.g. 32, 64, 128, 512)

o Hy = (H; — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)

° DQ-_—K

With parameter sharing, it introduces F' - F' - Dy weights per filter, for a total of (F' - F' - Dy) - K weights

and K biases.
In the output volume, the d-th depth slice (of size W5

x H>) is the result of performing a valid convolution

of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.




tf.layers.conv2d

conv2d(
inputs,
filters,
kernel_size, )
strides=(1, 1), inputs : Tensor input.
padding="valid',
data_format='channels_last',
dilation_rate=(1, 1), convolution)

3221&222??32% kernel_size : An integer or tuple/list of 2 integers, specifying the height and width of the 2D

kernel_initializer=None, convolution window. Can be a single integer to specify the same value for all spatial dimensions.

bias_initializer=tf.zeros_initializer(), A . , ; G 7 .
) O strides : An integer or tuple/list of 2 integers, specifying the strides of the convolution along the
kernel_regularizer=None,

bias_regularizer=None, height and width. Can be a single integer to specify the same value for all spatial dimensions.

activity_regularizer=None, Specifying any stride value != 1 is incompatible with specifying any dilation_rate value!=1.
kernel_constraint=None,

bias_constraint=None, padding : One of "valid" or "same" (case-insensitive).

trainable=True,

name=None,

reuse=None

filters : Integer, the dimensionality of the output space (i.e. the number of filters in the

Defined in tensorflow/python/layers/convolutional.py.
Functional interface for the 2D convolution layer.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input
to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias
vector is created and added to the outputs. Finally, if activation is not None, it is applied to the
outputs as well.




TensorFlow Padding Options

"VALID" = without padding:

inputs: 1RO 3RS 6 70 SO B 108 TR ((195513)
(] dropped

"SAME" = with zero padding:

pad| | pad
inputs: @1 2 3 4 5 6 7 8 9 10 11 12 130 o

Input width = 13
Filter width = 6

Stride =5



Pooling Layer

224x224x64

L
'

e makes the representations smaller
and more manageable

e operates over each activation map
independently

—

224

Slide credit: CS231n Lecture 7

downsampling

112

112

52



Max Pooling
Single depth slice

max pool with
2x2 filters and stride 2

Slide credit: CS231n Lecture 7

53



Max Pooling

» Accepts a volume of size W; x H; x Dy
* Requires three hyperparameters:
o their spatial extent F',
o the stride S,
» Produces a volume of size Wy x Hy x D, where:

o Wo =W, —F)/S+1

o Ho=(H; —F)/S+1

° .D2 — D1
» Introduces zero parameters since it computes a fixed function of the input
» Note that it is not common to use zero-padding for Pooling layers

Slide credit: CS231n Lecture 7

54



Case study: LeNet-5 e

C3.f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

6@28:28 |
S21, mags r CS: layer F6:layer QUTPUT

|
FullcomLection ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

55
Slide credit: CS231n Lecture 7



Case Study: AleXNet [Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture

227x227x3] INPUT

55x55x96] : 96 11x11 filters at stride 4, pad 0
27x27x96] MAX POOLI1: 3x3 filters at stride 2
27x27x96] NORM 1: Normalization layer
27x27x256] : 256 5xS filters at stride 1, pad 2
13x13x256] MAX POOL2: 3x3 filters at stride 2
13x13x256] NORM?2: Normalization layer

13x13x384] : 384 3x3 filters at stride 1, pad 1
13x13x384] : 384 3x3 filters at stride 1, pad 1
13x13x256] : 256 3x3 filters at stride 1, pad 1

6x6x256] MAX POOL3: 3x3 filters at stride 2
4096] FC6: 4096 neurons

4096] FC7: 4096 neurons

1000] FC8: 1000 neurons (class scores)

r— p— p— p— p— p— p— p— p— p— p— po— po— oy

Slide credit: CS231n Lecture 7

56



Case Study: VGGNet [Simonyan and Zisserman, 2014]

ConvNet Configuration

(A T AN B __

reight
ldvers

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

best model

conv3-256
conv3-256

conv3-512
conv3-512

11 weight
layers

conv3-256
conv3-256

conv3-512
conv3-512

conv3-512
conv3-512

conv3-256

16 weight
layers

16 weight
layers

24 RGB 1 undg )

conv3-128

conv3-128

conv3-256
conv3-256
convl-256

maxpool

conv3-512
conv3-512

conv3-512
conv3-512
convl-512

maxpool

conv3-512
conv3-512

conv3-512
conv3-512
convl-512

conv3-64

conv3-64
conv3-128
conv3-128

conv3-256

conv3-256
conv3-256

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512

19 weight
layers

conv3-64
conv3-64

conv3-128
conv3-128

conv3-5
conv3-5

conv3-512

maxpool

11.2% top S error in ILSVRC 2013
->7.3% top S error

Table 2: Number of parameters (in millions).

Slide credit: CS231n Lecture 7




1x1 convolutions
*
3x3 max pooling

Averagepool
TXT+1V)

Cony.
3x3+1(S)

Conv
x5+ 1(S)

5x5 convolutions
L)
1x1 convolutions

Conv. Conv
1x1+1(s) [l 1x1+ (5}

Conv Conv.
3x3+1(5) [l 5x5+ 1iS)

[ Conv
1x1+1(5) [l 131+ 15)

Filter
concatenation

Previous layer

3x3 convolutions
4
1x1 convolutions

Conv. Conv Conv. Conv.
1+15) [l 3x3+1s) [l sxs+1s) [l 1+

Conv conv.
1x1+1i5) [l 1x1+1(S)

MaxPool
3+ 1US)

Cony. Conv Conv Conv
1x1+1(5) [ll 33+115) [l 5xs+15) [l 1x1+105)

1x1 convolutions

Conv
1x1+1{S}

Conv.
1x1+1(S)

MaxPool
3x3+1(S)

Conv Conv. Conv. Conv
1x1+1(5) [l 33+115) [l 5x5+1i5) [l 1x1+1(5)

Conv. Conv
1x1+1{s) il 1x1+1(5)

Conv Conv
3x3+14s) il 5x5+1(s)

Conv
1x1+14S)

Conv.
1x1+1(5)

MaxPool
33 +1iS)

Averagepool
Sx5+3(V)

-
3
4
Q
—
on
=
S
QO

Conv Conv
33+1(5) [l Sx5+1(S)

MaxPool
3x3+1{S)

Conv
1x1+1(S)

Conv
x1+1(5)

Conv Conv
3x3+15) [l 5x5+1(5)

Conv

Conv MaxPool
1x1+1(5) [l 1x1+1(5)

3x3+1{S)

Coov. Conv
3x3+1(5) [l 5x5+1(S)

Conv.
1x141{S}

-
=
e
s
S
=
8

Cony

Conv Maxpool
1x1+1(5) [l 1x1+1(S)

3x3+1(5)

Case study

MaxPool
IK3+2(5)

LocalRespNorm

ILSVRC 2014 winner (6.7% top S error)

Incept

MaxPool
3x3+2(5)

Conv
TxT+2(5)

Slide credit: CS231n Lecture 7




34-layer plain

image

7x7 conv, 64, /2

pool, /2
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 128, /2
3x3 conv, 128
3x3 conv, 128

3x3 conv, 128

Case study: ResNet . o

34-layer residual

image

7x7 conv, 64, /2

pool, /2
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128

spatial dimension only

56x56!

X
identity

Slide credit: CS231n Lecture 7



Case study: ResNet . o

Research ..
2-3 weeks of training on

Revolution of Depth : 8 GPU machine

AlexNet, 8 layers % VGG, 19 layers s ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) = (ILSVRC 2015)

at runtime: faster than a
VGGNet!

(even though it has 8x
more layers)

ILSVRC 2015 winner
(3.6% top S error)

=ICCV

(slide from Kaiming He’s ICCV 2015 presentation) Slide credit: CS231n Lecture 7



Case study: ResNet . o

Research

Revolution of Depth

152 layers

| 22 layers \ ’ 19 Iayers \ . I

357 I ! | 8 layers \ 8 layers shaIIow

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

e, Xiangyu Zhang, Shaoging Ren, & Jian Sun. "Deep Residua

(slide from Kaiming He’s ICCV 2015 presentation) Slide credit: C$231n Lecture 7



Visualizing ConvNet Features



What's going on inside ConvNets?

This image is CCO public domain

Class Scores:
1000 numbers

pooling

Input Image:
3 x 224 x 224

Krizhevsky et al, “lmageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.


https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Visualizing CNN features: Look at filters

- = I\ /1. =1

\ - A ‘

- : - | = )

- WA = A\ 1|
- 4

con

Slide credit: CS231n Lecture 9
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lar features

11m1i

First layers: networks learn s
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Slide credit: CS231n Lecture 9



Visualizing CNN features: Look at filters

Weights:

(EFEAEE ISP EAS TN ) (AN EE PR ENNGE SR DAa
(AR ARSI EEDD ) (IR IR E VAN ERN
W) (EEEE IF RO NEIDASY ) (PR Y ES T ANY OIS TER
) (PN EICENEVACEAN SRR ) (FEATYRONRE AR TS
ERF)(FEARSRFEEEAMATREANE) (DA NASEENAEUDERG
EAAE) (MR BN AN ERCEAN)(FI RN W
FACOR)(EYRREIFELCENERAENELUNS)(ENEOAEECREEAS
LT E PR T R b T L b TR TR LR LT T
70 20 ) (0 T e 15 O ) o
SR ENEO) (AR AN LN LR AN ) (N ERARERR T
HESIEnTSE

Weights:

(MR EEEN SN )( IS EOACEPAYESELE (PR EC D

NN END) (AR NLNINGEE YY) (AN EE T A

BE) (M IRRARYFUANSR PN )(BETESUAMELNSN TS E)(2ANOE
AVLLANASOTE)( ST NS ) (AR TN AE .

PO )l O 0 O % P ) 4 0 20 O O TPV O B ) (A
I 0 ) 6 ) (O I A 0 G

EEMVEN)( MEEEUENAFSEEFAAR) (SRS TR FARAREEE) (N
AEEENEEERERT ) (AN T ) (SN EEN
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Slide credit: CS231n Lecture 9 N o
Filters from ConvNet]$ CIFAR-10 model Filters from higher layers don’t make much sense



Last Layer: Nearest Neighbors 6. vector

Testimage L2 Nearest neighbors in feature space

Recall: Nearest neighbors
in pixel space
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Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.




Last Layer: Dimensionality Reduction

Visualize the “space” of FC7
feature vectors by reducing
dimensionality of vectors from
4096 to 2 dimensions

Simple algorithm: Principal
Component Analysis (PCA)

More complex: t-SNE

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008

Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.
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Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008 See high'reSO|Ution VerSionS at

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.

Figure reproduced with permission. http://cs.stanford.edu/people/karpathy/cnnembed/




Visualizing CNN features: (guided) backprop

Choose an image Choose a layer and a neuron in a CNN

Question:
How does the chosen neuron respond to the image?

Slide credit: CS231n Lecture 9
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Visualizing CNN features: (guided) backprop

1. Feed image into net

2. Set gradient of chosen layer to all zero, except 1 for the chosen neuron

3. Backprop to image:
Guided

backpropagation:

Zeiler and Fergus, “Visualizing and Understanding =~ ‘ = InStead
Convolutional Networks”, ECCV 2014. SANVESS
Dosovitskiy et al., “Striving for Simplicity: The All
Convolutional Net”, ICLR Workshop 2015

Slide credit: CS231n Lecture 9

71




Visualizing CNN features: (guided) backprop

. .. guided backpropagation corresponding image crops
Visualization of patterns £ Dpes P 7 = P

learned by the layer conv6
(top) and layer conv9 o Y,

(bottom) of the network " AN
trained on ImageNet. 20 '

® e o e P S8 g g

N -

Each row corresponds to
one filter. guided backpropagation
The visualization using
“guided backpropagation”
is based on the top 10
image patches activating
this filter taken from the
ImageNet dataset.

Dosovitskiy et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Slide credit: CS231n Lecture 9
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Visualizing CNN features: Gradient ascent

(Guided) backprop: Gradient ascent:
Find the part of an image Generate a synthetic image that
that a neuron responds to maximally activates a neuron

[* = arg max, f(I) +R(I)

\

Neuron value Natural image regularizer

Slide credit: CS231n Lecture 9 3



Visualizing CNN features: Gradient ascent

L 2
arg max[S (D]~ Al|7]3

score for class ¢ (before Softmax)

1. Initialize image to zeros

zero image

Repeat:

2. Forward image to compute current scores

3. Set gradient of scores to be 1 for target class, O for others
4. Backprop to get gradient on image

5. Make a small update to the image

Simonyan et al, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, ICLR Workshop 2014
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Visualizing CNN features: Gradient ascent

s
washing machine

bell pepper . vhusk.\' == S ~ ostrich

Simonyan et al, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, ICLR Workshop 2014




Visualizing CNN features: Gradient ascent

Better image regularizers give prettier results:

beest

- - \ ' &

T ey
$
o sd&de;‘

Ground Beetle Indian Cobra Station Wagon Black Swan

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2015



Visualizing CNN features: Gradient ascent

Use the same approach to visualize intermediate features

il

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2015



Visualizing CNN features: Gradient ascent

Use the same approach to visualize intermediate features

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2015



Visualizing CNN features: Gradient ascent

You can add even more tricks to get nicer results

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016

A
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Take-aways

Convolutional networks are tailor-made for computer vision tasks.
They exploit:

- Hierarchical nature of features
- Translation invariance of features

“Understanding” what a convnet learns is non-trivial, but some clever
approaches exist.
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Next class

ConvNet in TensorFlow

Feedback: huvenn@stanford.edu

Thanks!
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