
Introduction to convnets
CS 20: TensorFlow for Deep Learning Research

Lecture 6
1/31/2017

1



Agenda

Computer Vision

Convolutional Neural Networks

Convolution

Pooling

Feature Visualization

Slides adapted from Justin Johnson

Used with permission.
2



Convolutional Neural Networks:
Deep Learning with Images



Computer Vision - A bit of history

4
https://dspace.mit.edu/bitstream/handle/1721.1/6125/AIM-100.pdf



Computer Vision - A bit of history

5
https://xkcd.com/1425/







Object Segmentation

Figure credit: Dai, He, and Sun, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, CVPR 2016



Pose Estimation

Figure credit: Cao et al, “Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields”, arXiv 2016



Image Captioning

Figure credit: Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions”, CVPR 2015



Dense Image Captioning

Figure credit: Johnson*, Karpathy*, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016



Visual Question Answering

Figure credit: Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015 (left)
Zhu et al, “Visual7W: Grounded Question Answering in Images”, CVPR 2016 (right)

 (r



Image Super-resolution

Figure credit: Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, arXiv 2016



Art generation

Gatys, Ecker, and Bethge, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016 (left)
Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural Networks” (upper right)
Johnson, Alahi, and Fei-Fei: “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016 (bottom left)



Convolutional Neural Networks



16

Recall: fully connected neural network

x
[C1]

w1
[C1×C2]

Matrix
 

Multiply

s
[C2]

Nonlinearity

a
[C2]

w2
[C2×C3]

ŷ
[C3]

Matrix
 

Multiply



17

Recall: fully connected neural network

3072
1

32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1
10



18

Convolutional Neural Network

x
C1×H×W

w1
C2×C1×k×k

Convolution

s
C2×H×W

Nonlinearity

a
C2×H×W

w2
C2HW/4×C3

ŷ
C3

p
C2×H/2×W/2

Pooling
Fully

Connected



Convolution

Image courtesy Apple



Convolving “filters” is not a new idea

Sobel operator:



21

Convolution Layer

32

32

3

32x32x3 image

width

height

depth

Slide credit: CS231n Lecture 7



22

Convolution Layer

32

32

3

32x32x3 image

width

height

depth

Slide credit: CS231n Lecture 7

5x5x3 filter

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume



23

Convolution Layer

Slide credit: CS231n Lecture 7

32

32

3

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)



24

Convolution Layer

Slide credit: CS231n Lecture 7

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1
28

28



Output

Filter

Input

Padding



26

Convolution Layer

Slide credit: CS231n Lecture 7

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

2
28

28

consider a second, green filter



32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a new “image” of size 28x28x6!

Slide credit: CS231n Lecture 7



Slide credit: CS231n Lecture 7

ConvNet is a sequence of Convolution Layers, interspersed with activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters



Slide credit: CS231n Lecture 7

ConvNet is a sequence of Convolution Layers, interspersed with activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24



Two key insights
1) Features are hierarchical

Composing high-complexity features out of low-complexity features is more 
efficient than learning high-complexity features directly.

e.g.: having an “circle” detector is useful for detecting faces… and basketballs

2) Features are translationally invariant

If a feature is useful to compute at (x, y) it is useful to compute that feature at 
(x’, y’) as well







example 5x5 filters
(32 total)

We call the layer convolutional 
because it is related to convolution 
of two signals:

element-wise multiplication and sum 
of a filter and the signal (image)

one filter => 
one activation map



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

=> 5x5 output



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

=> 3x3 output!

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit! 
cannot apply 3x3 filter on 
7x7 input with stride 3.



N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\



In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1



In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!



In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
       F = 5 => zero pad with 2
       F = 7 => zero pad with 3



Remember back to… 
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters

28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24



Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0





TensorFlow Padding Options

Input width = 13

Filter width = 6

Stride = 5



52

Pooling Layer

Slide credit: CS231n Lecture 7

● makes the representations smaller 
and more manageable 

● operates over each activation map 
independently



53

Max Pooling

Slide credit: CS231n Lecture 7

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 
2x2 filters and stride 2 6 8

3 4



54

Max Pooling

Slide credit: CS231n Lecture 7

Common settings:

F = 2, S = 2
F = 3, S = 2



55

Case study: LeNet-5 [LeCun et al., 1998]

Slide credit: CS231n Lecture 7

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]



56

Case study: AlexNet [Krizhevsky et al. 2012]

Slide credit: CS231n Lecture 7

Full (simplified) AlexNet architecture

[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)



57

Case study: VGGNet [Simonyan and Zisserman, 2014]

best model

Only 3x3 CONV stride 1, pad 1
and  2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013
-> 7.3% top 5 error

Slide credit: CS231n Lecture 7



58

Case study: GoogLeNet [Szegedy et al., 2014]

Slide credit: CS231n Lecture 7

Inception module
ILSVRC 2014 winner (6.7% top 5 error)



59

Case study: ResNet [He et al., 2015]

Slide credit: CS231n Lecture 7

spatial dimension only 
56x56!



60

Case study: ResNet [He et al., 2015]

Slide credit: CS231n Lecture 7

ILSVRC 2015 winner 
(3.6% top 5 error)

(slide from Kaiming He’s ICCV 2015 presentation)

2-3 weeks of training on 
8 GPU machine

at runtime: faster than a 
VGGNet! 
(even though it has 8x 
more layers)



61

Case study: ResNet [He et al., 2015]

Slide credit: CS231n Lecture 7(slide from Kaiming He’s ICCV 2015 presentation)



Visualizing ConvNet Features



This image is CC0 public domain

Class Scores: 
1000 numbers

What’s going on inside ConvNets?

Input Image:
3 x 224 x 224

What are the intermediate features looking for?
Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en


64

Visualizing CNN features: Look at filters

Slide credit: CS231n Lecture 9

conv1



65

First layers: networks learn similar features

Slide credit: CS231n Lecture 9



66

Visualizing CNN features: Look at filters

Slide credit: CS231n Lecture 9
Filters from ConvNetJS CIFAR-10 model Filters from higher layers don’t make much sense









70

Visualizing CNN features: (guided) backprop

Slide credit: CS231n Lecture 9

Choose an image Choose a layer and a neuron in a CNN

Question: 
How does the chosen neuron respond to the image?



71

Visualizing CNN features: (guided) backprop

2. Set gradient of chosen layer to all zero, except 1 for the chosen neuron

3. Backprop to image:

1. Feed image into net

Guided 
backpropagation:
insteadZeiler and Fergus, “Visualizing and Understanding 

Convolutional Networks”, ECCV 2014.
Dosovitskiy et al., “Striving for Simplicity: The All 
Convolutional Net”, ICLR Workshop 2015
Slide credit: CS231n Lecture 9



72

Visualizing CNN features: (guided) backprop
Visualization of patterns 
learned by the layer conv6 
(top) and layer conv9 
(bottom) of the network 
trained on ImageNet. 

Each row corresponds to 
one filter. 

The visualization using 
“guided backpropagation” 
is based on the top 10 
image patches activating 
this filter taken from the 
ImageNet dataset.

Dosovitskiy et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Slide credit: CS231n Lecture 9



73

Visualizing CNN features: Gradient ascent

Slide credit: CS231n Lecture 9

(Guided) backprop:
Find the part of an image 
that a neuron responds to

Gradient ascent:
Generate a synthetic image that 
maximally activates a neuron

I* = arg maxI f(I) + R(I)

Neuron value Natural image regularizer



74

Visualizing CNN features: Gradient ascent

Simonyan et al, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, ICLR Workshop 2014 

score for class c (before Softmax)

zero image

1. Initialize image to zeros

Repeat:
2. Forward image to compute current scores
3. Set gradient of scores to be 1 for target class, 0 for others
4. Backprop to get gradient on image
5. Make a small update to the image



75

Visualizing CNN features: Gradient ascent

Simonyan et al, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, ICLR Workshop 2014 



76

Visualizing CNN features: Gradient ascent

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2015

Better image regularizers give prettier results:



77

Visualizing CNN features: Gradient ascent

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2015

Use the same approach to visualize intermediate features



78

Visualizing CNN features: Gradient ascent

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2015

Use the same approach to visualize intermediate features



79

Visualizing CNN features: Gradient ascent

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016

You can add even more tricks to get nicer results



Take-aways

Convolutional networks are tailor-made for computer vision tasks.

They exploit:

- Hierarchical nature of features
- Translation invariance of features

“Understanding” what a convnet learns is non-trivial, but some clever 
approaches exist.

80



Next class

ConvNet in TensorFlow

Feedback: huyenn@stanford.edu

Thanks!

81

mailto:huyenn@stanford.edu

